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Theoretical restrictions that must be imposed on models of nucleon electromagnetic structure are derived. 
The equality of electric and magnetic form factors at the threshold for nucleon-antinucleon annihilation 
(q2— —4M2) is established from the proper momentum dependence of the s- and d-wave matrix elements of 
the electromagnetic current density. The role of this equality in approximate theoretical treatments of GE 
and GM is discussed. Certain general implications of recent elastic electron-proton scattering data are inter
preted as additional constraints to be imposed on resonance models which have no "core contributions." One 
such proposed four-pole model involving the [o>,0,p,£]] vector resonances is found to be inconsistent with cer
tain of these restrictions. 

I. INTRODUCTION 

RESULTS of recent cross-section measurements for 
elastic electron-proton scattering at high momen

tum transfer1 have invited renewed speculation on 
theoretical models for nucleon electromagnetic struc
ture.2'3 These new data ^appear consistent with an 
asymptotic decrease proportional to 1/q2 for both the 
electric and magnetic proton form factors. Such 
behavior suggests the attractive possibility of unsub-
tracted dispersion relations with spectral functions that 
are dominated by p-w&ve multimeson resonances of low 
mass.4 Our intent is to examine some restrictions that 
must be imposed on these models of the nucleon electro
magnetic form factors in addition to the well-known 
boundary values at zero momentum transfer. 

In Sec. II the Dirac and Pauli form factors are shown 
to be free of kinematic singularities; this fact alone 
implies the equality of the electric and magnetic form 
factors at the threshold of the nucleon-antinucleon 
annihilation channel. A sufficient condition to derive 
this threshold equality is the proper momentum 
dependence of the s- and d-wave matrix elements of the 
electromagnetic current density at the threshold for 
NN annihilation through a virtual photon. 
% In Sec. I l l we are primarily concerned with the 
proposed resonance fits for the form factors. The 
equality of GE and GM at q2= — 4M2 and certain other 
general implications of the experimental data are 
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B 

interpreted as restrictions on the parameters for such 
models. 

II. THRESHOLD BEHAVIOR IN THE NN 
ANNIHILATION CHANNEL 

The conventional decomposition of the matrix 
element of the nucleon current into Dirac and Pauli 
form factors is5 

{p'\JAp)=i{Myp<!p«yi>u(v') 
X[T/ i (« 2 ) -v(? . /2M)F 2 ( ( f )>(p) . (1) 

The electric and magnetic form factors, which have 
direct physical interpretation as the distribution of 
charge and magnetization in the nucleon,6*7 are related 
to the Dirac and Pauli form factors by 

GE(q2)^F1(q
2)-(q2/4M2)F2(q

2), 

GM(q2) = F1(q
2)+F2(q

2). 
(2) 

Once we can establish that Fi and F2 are nonsingular 
at the threshold of the nucleon-antinucleon channel, 
the equality 

GE(~4M2) = GM(-4M2) (3) 

follows at once from the defining equations, Eq. (2). 
This threshold condition holds of course for both 
proton and neutron (or, alternatively, for both vector 
and scalar) form factors.8 

The standard procedure for showing that the 
invariant amplitudes are free of kinematic singular
ities9,10 breaks down precisely at the point of interest, 
q2— — \M2. To see this, we consider the quantity 

Y^{M-iy'Pf)ly,F1{q2)-~a,v{qv/2M)F,{q2)-} 
_____ X(M-iyp), (4) 

5 The Fj are still operators in isospin space, FJ = FJS-\-TZFJV 

(7 = 1,2) and so F^FjS+Ff, Fy» = F / - F / . 
6 F. J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119, 

1105 (1960). 
7 R. G. Sachs, Phys. Rev. 126, 2256 (1962). 
8 S. Bergia and L. Brown, Stanford Conference, 1963, (unpub

lished) have also considered this threshold equality [L. Brown 
(private communication)]. 
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FIG. 1. Experimental data on the proton electric and magnetic 
form factors for 4-momentum transfers ranging from 20 F~2 to 
100 F " 2 : (a) q2GM

p(q2), (b) q2GEHq2)-

which is analytic except for the usual dynamical cut. 
Thus the traces over the spin indices 

r1(fl«)=Tr{7l,rj, 

r2(52)=(?„/2M)Tr{^r,}, 
(5) 

yield functions of q2 with no more singularities than 
those required by unitarity. Solving Eqs. (4) and (5) 
for Fi and F2, we find 

F2(f) = WT1(f)+^2M*-f)T2(f)y>-Kf), (6) 

where £ (g 2 )= -(2q2/M2)(q2+4:M2)2. The absence of 
kinematic singularities in the 7\- implies the absence of 
such singularities in the Fi except possibly at q2=0 for 
F2 and q2= — AM2 for Fi or F2. Since each of these 
points is at the boundary of a physical region, arguments 
based on the known behavior of physical matrix 
elements can be invoked to establish regularity. At 
q2=0 the finiteness of the nucleon magnetic moments 
implies the finiteness of F2 there. At q2= —4M2 regular
ity^ of the Fi and F2 follows from consideration of the 
NN annihilation through a virtual photon: We examine 

the matrix element of the current in the rest frame of 
the nucleon-antinucleon pair. The annihilation occurs 
only in the 3Si and 3Z>i pair states. For small nucleon 
momenta | p |, the matrix element has the form11 

(0\3\pp)= -x^(F1+F2)ir+(v2/6M) 
X(F*-Fi)(3*-ft-v)lxp. (7) 

In order that the individual partial waves of this matrix 
element have the required | p |2l behavior near threshold, 
both (Fi+F2) and (Fi—JF2) must be finite as | p | - » 0. 
This eliminates the possibility of a kinematic singularity 
in the Fi at q2=— 4M"2. Of course in the absence of 
experimental information we cannot actually say that 
the | p |2l threshold behavior is obeyed. We ignore the 
unlikely occurrence of a dynamical pole at q2=— 4ilf2 

which would alter the normal threshold momentum 
dependence. Such a dynamical singularity would corre
spond to the presence of a stable vector meson o_f mass 
2M and would lead to a greatly enhanced NN —• ee 
cross section near threshold. 

The question naturally arises to what extent Eq. (3) 
should be maintained in an approximate treatment of 
the form factors; in particular, we have in mind struc
tural models based on the dominance of resonant 
p-wsive intermediate states. For the following two 
reasons we feel that this threshold equality must be 
maintained in any approximate theoretical treatment 
of the electric and magnetic form factors: First, failure 
to impose this condition necessarily leads to a pole 
term in Fi of the form a%/{(f-\-AM2). In addition to 
destroying the proper analytic structure of the form 
factors, this extraneous pole vitiates the interpretation 
of the residues of legitimate poles as coupling constants 
and, in fact, may well obscure the theoretical signif
icance of empirical fits to the experimental data. 
Secondly, even in the more limited focus where nearby 
singularities and thresholds are assumed predominant, 
the NN threshold is not much higher than the masses of 
resonances commonly assumed to be of importance in 
the form factors. For example, the mass of the <j> meson 
is 1020 MeV and the mass of the B meson, which may 
also be a vector resonance,12 is 1220 MeV as compared 
with 1878 MeV for the NN threshold. Thus, we conclude 
that meaningful theoretical approximations to the 
real nucleon electromagnetic structure should embody 
the equality of GE and GM at (f—-~AM2 to a good 
approximation. 

III. RESONANCE MODELS 

The experimental data on the proton electric and 
magnetic form factors1'13 are plotted in Fig. 1 for 4-
momentum transfers ranging from 20 F~2 to 100 F~2. 

11 P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys. 
Rev. 112, 642 (1958). 

12 W. R. Frazer, S. H. Patil, and N. Xuong, Phys. Rev. Letters 
12, 178 (1964). 

13 L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys. 
35, 335 (1963). 
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These data have been interpreted1,3 to be consistent 
with the assumption that 

\im q2GM
p(q2) = CM

p, 

(8) 
lim5*G,*(g») = C V , 

where CMP and CEP are constants. If we accept this 
interpretation of the data at face value, then with equal 
validity we infer from the apparent continuity of the 
data that 

(Note that noninterference of GE and GM in the 
Rosenbluth formula makes direct determination of the 
sign of either form factor impossible in electron-nucleon 
scattering experiments.13 However, interference does 
occur in electron-deuteron scattering.14) 

The physical interpretation of Eqs. (8) and (9) is that 
the charge and current densities of the proton in 
configuration space remain positive as the origin of the; 
distribution is approached. This interpretation follows; 
from the relationship of the charge and current den
sities to the Fourier transform of the form factors 
evaluated in the Breit frame,7 i.e., q2— q2. 

p(r) = e(27r)"3 / d«gG*(q*)<r*-', 

(10) 

J(r) = i6(27r)-3 / d*q{p x q)GM(q2)^'*. 

From Eqs. (8) and (10) we obtain the desired result 
for resonance models: 

P p ( r ) - > e ( 4 7 r r ) - 1 C ^ , 
r->0 (H) 

J2,(r)->e(47rr3)-1(<rxr)CMp. 
r->0 

Experimental information on asymptotic behavior 
exists on]y for the proton form factors. In the following 
treatment we shall also employ the reasonable conjec
ture that the same 1/q2 asymptotic decrease obtains for 
the neutron form factors, Gn. This is entirely consonant 
with the spirit of recent resonance models for electro
magnetic nucleon structure.3 At this point an examina
tion of Eq. (2) and the inverse equations for the Dirac 
and Pauli form factors, along with the information on 
analytic properties of the form factors derived in Sec. I I , 
shows the complete equivalence of the following two 
statements: 

(i) The form factors GE and GM satisfy unsubtracted 
dispersion relations (no kinematic singularities) and 

^ ( - 4 M 2 ) = G M ( ~ 4 M 2 ) . 

14 D. J. Drickey and L. N. Hand, Phys. Rev. Letters 9, 521 
(1962). 

(ii) The form factors Fi and F2 satisfy unsubtracted 
dispersion relations (no kinematic singularities) and 

\imq2F2(q
2) = 0. 

Although the electric and magnetic form factors are 
advantageous from the experimental point of view,13 the 
F's are more useful for some theoretical analyses. 

The simplest possible resonance model without "core 
contributions" consists of two isovector resonances 
(V, V) and two isoscalar resonances (S, 6"). In this 
case the Dirac and Pauli form factors may be expressed 
as 

2 W ) = (1/2)DV/(1+<?2A)- (/i*-D/(l+<z2/0], 
W(^)=^C/2V(i+?2A)-(/2^i)/(i+g2A0], (12) 

^ S ( s c a l a r ) or V(vector), 

where the label i also denotes the (mass)2 of the ith. 
resonance, e.g., S=MS

2, S' = MS>
2. The known F(0) 

values have already been imposed. From the asymptotic 
conditions q2F2

i —> 0, we determine the residues of the 
poles of F2\ 

f^i'/ii'-i), i=S,V. (13) 

On the basis of certain physical arguments concerning 
the structure of the nucleon, Sachs has also suggested 
the limit on the proton form factor 

\imGE
p(q2)/GM

p(q2)=l (14) 

as well as the asymptotic limits <fF2
l —» 0.2'7 Further

more, the recent Cambridge experiment is consistent 
with GEPZ=ZGMP at large momentum transfers.1 We are 
now in a position to investigate Eq. (14) within the 
framework of the resonance model. From Eq. (2) we see 
that the limit given in Eq. (14) can also be expressed as 

\im(q2)2F2v(q2) = 0 (15) 

for noncore resonance models. In terms of the 4-pole 
structure, we obtain from Eqs. (12), (13), and (15) a 
condition on the masses of the contributing resonances, 
namely, that 

(S'/V')(S/V)=-KV/K8=30.9. (16) 

This relation is completely incompatible with reasonable 
choices for the masses. If, for example, we choose the 
phi and rho mesons for S and V, then we find Ms' 
= 4.1A/>>. This solution obviously violates the nearby 
singularity concept. Such large mass splitting also 
precludes the assignment of S' and V' to an octet 
representation of SU3. Thus, it appears that the Sachs 
limit, Eq. (14), can never be realized in the 4-pole 
noncore resonance model. Therefore, we will not insist 
on this limit further but will go on to the other restric
tions inferred from experiment. 

An examination of experimental conditions which 



B284 V. BARGER AND R. CARHART 

TABLE I. Experimental derivatives of the form factors 
at zero momentum transfer. 

dGs* 

dtf 

dGE
n 

d<? 

dGM% 

d<f 

dGM
n 

> 

•(0) = 

•(0) = 

(0) = 

(0) = 

= ~0.108±0.003F+2 

=0.021±0.001 F+2 

= -0.30±0.02F+2 

= +0.20±0.08 F+2 

the 4-pole resonance model must satisfy is more con
veniently accomplished in terms of electric and magnetic 
form factors, as previously noted. The pole expansion 
incorporating the known G(0) values may be written 

< W ) = (V2)&*V(l+8Vi)- fa'-l)/(l+sVO], 
G^(S2) = /*i&if i/(l+8a/*)- (gMi-l)/{l+qVi')~], (17) 

i = 5 , V. 

In demanding that the threshold equality in Eq. (3) 
hold for Eqs. (17), we are led to a relation between the 
residues of the poles in the electric and magnetic form 
factors: 

gM*= ( l / 2 ^ ) [ ^ + ( 2 / , " l ) ( l ~ i / 4 M 2 ) / ( l - ^ / ) ] , 
*=S, V. (18) 

We recall that this relation is essential to the reciprocity 
of statements (i) and (ii). The connection between Eqs. 
(12) and Eqs. (17) may now be expressed in terms of 
the corresponding residues. 

/i*= (gE'-mgM^M^/ii-i/m*), 

jf2<= (l/KdfaigM'-gBW/il-i/iM*) , (19) 

In principle, the residues gl are directly determinable 
from the experimental derivatives of the form factors 
and the resonance masses by the equations: 

r dGE
l n 

^=-[2i '— (0)+lJi/(i'-i), 
dG. 

dq 

AGM 
gM% 

T dGM
% "I 

- i'—-(P)/n+l \i/(i'-
L dq2 J 

(20) 

• 0 , 

i=S, V. 

In practice, however, the gMl are more accurately 
obtained from Eq. (18) since the experimental values of 
the electric derivatives are more precisely known than 
the magnetic (see Table I). The residues are now 
oyerdetermined by Eqs. (18) and (20) which results in 

a consistency requirement for the model (or, alterna
tively, a restriction on the range of resonance masses 
compatible with the experimental errors on the deriva
tives). Combining Eqs. (18) and (20) gives 

l / t ' + l / i - l / y f * 

rdGM
i dGE

i ' 
+ — ( 0 ) (0) 

L dq2 dq2 

/V-l/2) = 0, (21) 

Finally, we examine the consequences of Eq. (9) for the 
4-pole resonance model. A straightforward calculation 
yields the following constraints on the masses of 
contributing resonances: 

lim ($*£**) = £ \i' 
qZ—*oo 

and 

lim(?W) = 

s,v 

S,V 

r dGE
l I 1 

' i (0)+l/2 \+i/2 ^0 (22) 
L dq2 J J 

r dGM
l 1 } 

i (0)+l/2 \+i/2 f^0. (23) 
L do2 J J 

Through the use of the threshold condition at q2 

= — 4Af2, as expressed by Eq. (18), Eq. (23) can be 
converted to the more useful form 

]im(fGM*) = Z I 
dGtf 

i +1/2 
dq2 

+ fe-l/2)i/4M2"|+V2[^0. (24) 

Since the magnitude of JJLS— 1/2= —0.06 is quite small 
compared to #y—1/2= 1.85, the positivity condition 
on limq^0r)(q

2GEp) given in Eq. (22) is more stringent 
than the positivity condition on lxmq^00(q

2GMp) given 
in Eq. (24) above. Equations (21), (22), and (24) 
constitute basic conditions that must be satisfied if a 
4-pole resonance structure is a meaningful approxima
tion to nucleon electromagnetic structure. We now turn 
to numerical evaluation of these restrictions. 

A 4-pole resonance model is interesting only if positive 
identifications can be made with experimental res
onances. In a recent letter, Balachandran, Freund, and 
Schumacher3 suggested that the isoscalar resonances 
a>(l , 783), 0(1 , 1020) and the isovector resonances 
p(l~+, 750), B(?, 1220) provide a satisfactory explana
tion of the observed nucleon electromagnetic structure. 
In our subsequent analysis, we apply the set of criteria 
established in the previous paragraphs to their proposal. 
The experimental derivatives of the form factors at 
zero momentum transfer are tabulated in Table I.13 

Using these values, along with the associated experi
mental uncertainties, the left-hand sides of Eqs. (21), 
(22), and (24) have been calculated for the appropriate 
masses: 5=15.8 F~2, S'=26.7F-*, F=14.5F~2, V 
= 38.2 F~2. The results are recorded in Table II. 
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TABLE II. Numerical evaluation of criteria on the validity of 
the suggested {w,<f>,p,B} resonance model for nucleon electro
magnetic structure. The left-hand sides of Eqs. (21), (22), and 
(24) are numerically tabulated for this model. 

Equation Numerical Theoretical 
number result constraint 

(21) 
Vector case (-0.016±0.022) F2 - 0 

(21) 
Scalar case (0.199±0.687) F2 - 0 

(22) 
lim {<fGB*) (-6.36±1.46) F~2 J> 0 

g2-»oo 

(24) 
lim(q*GM

p) (4.68=hl.46) F~2 $>0 
q2-+ao 

Within the experimental errors, the model is not 
inconsistent with the threshold condition, Eq. (21), 
and the positivity condition on limff*-»00(<72Gjifp), Eq. 

INTRODUCTION 

THEORETICAL and experimental physicists are 
currently investigating mixing between particles 

of the same spin, parity, charge, and baryon number.1"4 

It is the aim of this paper to show how a sound theo
retical basis might be given, from which the conse
quences of mixing could be predicted. In the belief that 
it is the most interesting and physically relevant case, 
we confine the discussion to the mixing of neutral vector 
particles, such as the photon and <p, p, co mesons, which is 
caused by their interactions with conserved currents 
(which we shall assume renormalizable). 

In the main part of the paper we show how mixing 

* The research reported in this document has been sponsored 
in part by the Air Force Office of Scientific Research OAR through 
the European Office Aerospace Research United States Air Force. 

1 G. Feldman and P. T. Matthews, Phys. Rev. 132, 823 (1963). 
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3 T . Kaneko, Y. Ohnuki, and K. Watanabe, Progr. Theoret 

Phys. (Kyoto) 30, 521 (1963). 
4 S. Coleman and H. J. Schnitzer, Phys. Rev. 134, B863 (1964). 

(24). However, the positivity restriction on limfl2-*» 
(q2GE

p), Eq. (22), is badly violated. It should be 
noted that this latter condition is completely independ
ent of the threshold condition. Although the effective 
masses of the vector particles may be shifted slightly 
due to their broad widths,15 this effect (or the experi
mental uncertainties in the masses) does not signif
icantly modify the above results. Consequently, we 
conclude that the {co,0,p,jB} resonance model cannot 
accommodate all of the most evident general features of 
the experimental data on nucleon electromagnetic form 
factors. 
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may be correctly taken into account by an extension 
of conventional renormalization, and we then consider 
photon-vector-meson mixing as a particular case. 

VECTOR-PARTICLE FIELD THEORY 

We can use covariant notation5 to write the Lagran-
gian density6 for neutral vector fields Av\ i=l, • • -n, 
interacting with conserved currents /M

a, a = l , • • •, N, 
in a particular but arbitrary gauge specified by con
stants \^. This method allows us to consider massive 
and massless particles together; for the latter, we shall 
put in a mass M, and take the limit M—»0 at the 
appropriate place. 

L^LolA\mh\ t - ] -E« giaAjJf 
+terms not involving the yl's, (2.1) 

5 See G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633 
(1963). 

6 We use the notation a^b^a^b^—a*b and dMs (d/dxo, —d/dx). 
Repeated indices i, j , k are summed over, but the repeated index a 
is only summed over when 2Ja precedes the expression involved, 
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The field theory of neutral vector particles interacting with conserved currents is investigated as an 
example of particle mixing. It is shown that a generalization of conventional renormalization is necessary 
when mixing occurs, and that the observable masses and coupling constants are sufficient to determine 
transition amplitudes, without recourse to mixing parameters. The universality of electric charge renormali
zation is not changed when photon-vector-meson mixing is possible. 


